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SHULZ, D., D. CHERNICHOVSKY AND C. ALLWEIS. A novel method for quantifying passive-avoidance behavior
based on the exponential distribution of step-through latencies. PHARMACOL BIOCHEM BEHAV 25(5) 979-983,
1986.—In the extensive literature dealing with the one-trial passive-avoidance task the data are usually represented by the
median latency to respond. We propose here a novel representation and analysis of passive-avoidance data which is based
on the observation that the complement of the cumulative distribution of step-through latencies (i.e., the fraction of animals
remaining in the safe compartment) decays exponentially with time from the onset of the trial. A remarkably close fit of this
complementary distribution is seen when the best-fitting straight line is drawn through the data points plotted on semilog
coordinates. The slope of this line k., which we call “"the step-through rate constant,” (or alternatively, the T, which is
equal to 0.69/k) provides an accurate description of the population behavior as a whole in most cases. In view of the
exponential distribution of passive-avoidance data this treatment appears to be more appropriate than the widely-used
measures of central tendency, the median and mean. It is applicable to research on the effects of drugs on passive-
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avoidance memory, and probably appropriate to other behavioral paradigms and species.

Rats Passive-avoidance Memory

Exponential data analysis

THE aim of this paper is to propose the use of an exponential
statistical description and analysis for data obtained with the
one-trial passive-avoidance paradigm.

The data usually recorded with this widely-used paradigm
is two step-through latencies (STLs) for each animal; the
first for training and the second for test. These STLs vary
greatly from animal to animal. In working up the data, the
first step usually taken is the reduction of group data to a
single value sometimes without any measure of dispersion.

A random sampling of 40 research publications dealing
with passive-avoidance behavior from Bammer's review [ 1]
revealed that about 409% of these investigators expressed
their results as means and about 609 expressed them as
medians. Seven of the papers presented both means and
medians for good measure. There was also a small number of
authors who declined to use either of these measures and
instead preferred to use an arbitrary cut-off point or criterion
to demarcate between two states, “‘remembers’ and
“forgets.”” Various non-parametric tests of significance were
applied to the control and test data, the most popular being
the Mann-Whitney U-test. The STLs of individual animals
are rarely given.

The above data-treatments seem to be chosen in view of
the non-normal and highly skewed distribution of these
STLs. The situation is complicated by arbitrary cut-off of
very large STLs.

During the course of an investigation designed to find out
if our four-phase model of memory consolidation which was
derived with the use of an active-avoidance paradigm [2] was
applicable to the passive-avoidance paradigm we used a dif-
ferent statistical data treatment which has a number of ad-
vantages. This treatment is based on the observation that the
fraction of the animals in a group that had not yet stepped-
through as a function of time from the onset of the trial can
be fitted very closely indeed by an empirical function of the
form:

Fylt) = cre™,

where F,(t) is the fraction of animals which have not yet
stepped-through (i.e., fraction remaining) at any given time t
and c is a constant which has a value close to 1. This obser-
vation implies an exponential distribution of STLs. Hence
the behavior of a group in this task can usually be described
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FIG. 1. The distribution of training and test step-through latencies. Five-second

bins were used.

by a single parameter, its k value. This was found to be true
for both training and test data. The data treatment described
here is a special case of survival analysis {3].

METHOD
Experimental Animals

White local male rats (Sabra strain) weighing 120-150 g
were used. Animals received from the animal house were
kept in groups of 5 to a cage until the learning session (no
more than 5 days) and were allowed free access to dry food
pellets and water. Rats were first introduced to the experi-
mental room 1 day before training began. All rats were trained
in a one-trial step-through passive-avoidance task.

Training Apparatus

The apparatus consisted of a wooden box 61 cm long
divided into a small white start box (18x24x41 cm high),
and a black shock box (43x24x41 cm high) by a wall with
a 9 cm diameter hole at the bottom and a guillotine door. The
white start-compartment was illuminated by a 75 Watt lamp
situated above it. The black shock compartment was
covered with a black ceiling. Both compartments contained
separate grid floors consisting of 0.5 cm diameter rods 1 cm
apart. The black box grid could be electrified by a high volt-
age, constant current device. During the training both volt-
age and current were monitored on an oscilloscope and regis-
tered with a Grass Polygraph.

Training Procedure

Rats were placed in the white compartment facing the
wall opposite the door with the guillotine door open. Rats
were allowed to step through and the latency to cross into
the dark compartment with all four paws was recorded (train-
ing step-through latency). Immediately after having entered
the black box, a constant current footshock (50 ¢ps, 0.7 mA

peak-to-peak) was delivered until the rat escaped to the white
safe box. The “‘latency to escape’” shock was timed. After the
rat had escaped the shock the sliding door was closed and the
animal was removed from the apparatus 30 sec later. Rats
which did not enter the black box within 20 sec of being
placed in the apparatus or did not escape the punishing foot-
shock within 20 sec (3.5%) were discarded from the experi-
ment. Between training and test, animals were housed indi-
vidually and were not handled or disturbed. All behavioral
manipulations were conducted between 9 a.m. and 5 p.m.

Test Procedure

Rats were tested for their retention of the task at several
different training test intervals between 30 and 240 min. They
were placed in the white start box and the time until the
animal crossed into the black box (four paws) was measured.
The latency to enter at test will be called: *"test step-through
latency™” (test STL). Animals not entering the black box
within 180 sec were removed and assigned a score of >180. An
increase in test STL compared to training STL indicates re-
tention of the learned task.

RESULTS

Since detailed analysis failed to show any significant
differences between groups tested at different times during the
interval from 30 min to 240 min, the training and testing
results were pooled separately. The distribution of training
and testing latencies obtained is presented in Fig. 1.

It may be noticed that as a result of training there is a
great change in the distribution of STLs. The STLs of the
trained animals are distributed throughout the whole period
of 180 sec of observation, and a significant fraction remain in
the safe compartment at the end of this period.

Analvsis of Results

In our experiments the infinite number of times from the
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FIG. 2. The fraction of animals remaining plotted as a function of
time from the onset of the trial. Circle and rhombus symbols corre-
spond to training and test data respectively.

onset of the trial at which an animal may step through may
be regarded as a continuous random variable whose distri-
bution function F(t) is a continuous function which repre-
sents the probability to step through in less than time t:

F(t) = P(STL<1).

In practice we sum all STLs which are equal to or less
than any time t. The resulting distribution function is often
called a Cumulative Probability Function (CPF). The com-
plementary distribution function of this CPF is the fraction of
animals which have not yet stepped-through up to any point t
in time, 1.e., the Fraction Remaining Fy(t).

In the graphic representation of our experimental data, the
fraction of animals remaining was plotted as a function of
time at each point in time when an animal stepped-through.
Thus the time at which each animal steps-through will be
represented as a point on the graph (Fig. 2). Our data is
plotted in this way in Fig. 2 except that the training data
points represent the fraction of animals stepping-through
during each successive second due to the difficulty of plot-
ting a large number of data in such a small area.

The plotted fraction of animals remaining Fy(t) seems to
fall exponentially with time, suggesting that the data can be
described mathematically by an empirical function of the
form:

Fu(t) = cre™™ (1

We tested this idea by using a logarithmic transformation,
since if the data fits the exponential model then log F(t)
would decay linearly with time according to the following
linear equation:

log F(t) = —kt-log (e) + log (¢) 2)

A regression program was used to draw best-fit lines
through the points plotted on a semilogarithmic graph. The
plots obtained are presented in Fig. 3. The remarkable close
fit of the points to their lines indicated that the exponential
model was acceptable both for train and for test data.
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FIG. 3. The log of the fraction of animals remaining plotted as a
function of time from the onset of the trial. Values for F,(t) are also
indicated on the same logarithmic scale. Circle and rhombus repre-
sent training and test data respectively. r,.=—.994, standard error
of estimate=0.018; r,.,;,=—.988. standard error of estimate=0.044.

The fact that Fy(t) is exponential implies that its
Probability Density Function (PDF) (i.e., the probability of
animal stepping-through at any point in time) is also expo-
nential. This is so because the PDF is the negative derivative
of Fy(t) and hence retains the exponential form although the
constants change so that:

PDF = c-k-e ™ (3)

The ratio function obtained by dividing the PDF by its Fy(t)
represents the fraction of animals stepping-through at a given
time divided by the fraction remaining (i.e., not yet stepped-
through at that time). It expresses the probability that
animals which remain till some t time will step-through at
that time. Since in the present-case the Fy(t) function and its
PDF are exponential this ratio function remains constant
over time and is equal to k.

Equation (1) includes a parameter ¢ (which is the inter-
cept of Fy(t) with the Y axis at t=0) the value of which in the
relation to the value k determines the delay time of onset of
the exponential decay as follows:

taeray = log(c)/k-log(e) (4)

If ¢ is equal to 1 the exponential process begins without
delay. If ¢ is smaller than 1 the delay takes a negative value.
The meaning of this is that (1—c) fraction of the population
steps through immediately at t=0 prior to the onset of the
exponential process.

When c is greater than 1 it signifies a delay before the
onset of exponential step-through behavior.

In our case the regression analysis indicated small delays
of about 2 sec for training data and about 5 sec at test. To
simplify the model, the parameter ¢ can be restricted to 1
since no significant deterioration in the closeness of fit re-
sults. However the decision whether to neglect the delays or
not depends on the level of accuracy aimed at and whether
one is interested in the delays themselves.

If we decide to restrict the value of the parameter c to I,
the behavior of a population in the passive-avoidance
paradigm may be adequately and parsimoniously described
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by a single parameter, its K-value, which will be termed *‘the
step-through rate constant.”” Otherwise, two parameters, k
and c. are needed to describe the data.

The parameter k may be estimated by two different
methods: (1) The maximum likelihood method of estimation:

n
k =d/ = STL, (5)
i=1

where k is the maximum likelihood estimator of k, d is the
number of animals which stepped-through within the obser-
vation interval within 180 sec or 20 sec for test or training
respectively), and Y STL; is the sum of observed step-
through latencies of all animals in the experiment [3].

(2) The slope of the regression line for the logarithmically
transformed data may also be used for k-value estimation.
The slope of the best fitting line (b) is equal to k-log(e) in
equation (2). Hence k is equal to b/log(e) or 2.3b.

Both methods gave closely comparable k values. The re-
sults obtained with the second method only are presented
below (Table 1) since it was supplied by the regression pro-
gram which also gives the value of the intercept if it is differ-
ent from 0.

The exponential behavior of the population enables us
to estimate from the logplot the time at which one-half of the
population has already stepped through. We designate this
statistically-derived estimate as T,. If the parameter ¢ is
restricted to 1, there is a reciprocal relation between T, and
k such that:

T, = 0.69/k (6)

Hence the estimated T,,, is an equally valid measure of
the population behavior, and it is also presented in Table 1.

If the parameter ¢ is not restricted to | then the relation of
T to k is described by the following equation:

log (1/2) — log (¢)
Tpp= —o ki )
log (e) — k

DISCUSSION

The conventional reduction of passive avoidance data by
resort to means or medians seems to be based on the notion
that STL is a stimulus-to-response interval and that the indi-
vidual members of an ideal homogeneous population would
all have the same STL in this test. Conversely, variability in
STLs within a given population seems to be regarded as
unavoidable ‘*noise’” of experimental origin superimposed
on a signal of definite value. This ‘‘noise’” which is man-
ifested in the highly-skewed wide dispersion of the experi-
mental data is therefore discarded at the first step of data
analysis by resort to means or medians.

We advance the suggestion that since it is possible to
describe the behavioral data of the population as a whole
very accurately by a rate constant (i.e.. the ratio of the
number of animals stepping-through at some point in time
divided by the number of animals which have not yet
stepped-through) it is better to use this “step-through rate
constant’” or a measure which is based on it rather than use
an index of central tendency which is inappropriate to the
data distribution.

The ‘‘half-time,”” T,.. described above is an alternative
measure of group behavior derived from the step-through
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TABLE 1

VALUES OF THE CONSTANTS DERIVED BY FITTING
EXPONENTIAL FUNCTIONS TO TRAINING AND TEST DATA

Train Test
No. of rats 97 94
K + S.E. 0.183 = 0.0039  0.0086 + 0.00011]
T,» + S.E. 6.2 = 0.9 84.6 = 7.5
¢ = S.E. 1.3 + 0.012 1.04 = 0.0042

rate constant, It is usually a more reliable estimate of the
time at which 509% of the population have stepped-through
than is a median whose value is subject to fluctuation of the
time at which one or two ““central”” animals of the group
happen to step-through. Only providing that (1) the median
STL is less than the cut-off STL (180 sec) and that (2) the
“‘central animal™” happens to fall close to the regression line,
the value of this median will be close to that of the statisti-
cally derived T,,..

When these conditions are met. the median becomes a
measure of group behavior which owes its validity not its
conventional significance as a measure of central tendency
of a normally distributed population, but to the fortuitous cir-
cumstance that the data obtained in this test happens to have
an exponential distribution and in this context only. and
under the restricted circumstances stated above. the median
STL happens to be numerically close to T ..

However, in many publications the median of the test
STLS has the value of the cut-off time. This reduces the
validity of this measure compared with T, which can be
extrapolated from the regression line. In contrast to the me-
dian, T, is not a measure of central tendency: it is a concise
quantitative description of the F(t) distribution.

Regarding the influence of cut-off values on the analysis:
in the usual way of reducing the data to a mean, the arbitrary
cut-off values contribute spuriously in greater or smaller
measure to the value of the mean. It is one of the advantages
of the new approach we describe here, that the cut-off popu-
lation contributes legitimately to the definition of the regres-
sion line from which the population step-through latency is
derived.

As mentioned in the introduction, almost half of the au-
thors sampled from Bammer's review reduced their STL
data to a mean. This is not an appropriate way to treat the
results since there is no central tendency and the exponential
distribution of STLs causes the value of the mean to be
unduly influenced by the larger STL values. (1/k is some-
times referred to as the “‘mean’ of an exponential distribution
[3]. however, its value is often quite different from the value
of the mean as usually calculated. As the K value decreases,
the difference between the two “"means’” becomes larger. In
our case the I/k of the test data presented in Fig. 3 is 116 sec
whereas the statistical mean is 96 sec.)

The change in the step-through rate constants from train-
ing to test indicates that learning has occurred. We consider
the change in k or T,,, to be the best qualitative measure of
this learning.

Since the effect of a treatment can be assessed by com-
parison of the slopes of treated vs. non-treated populations
there is no need to adopt an arbitrary criterion for amnesia.

The most frequently used test of the significance of differ-
ences between groups in publications of passive-avoidance
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data is the non-parametric Mann-Whitney U-test. Since in
our analysis a k value is sufficient to describe the population
behavior a test of significance based on k values alone is
called for. The likelihood ratio parametric test or Cox F test
may satisfy this requirement, however various non-
parametric tests which have been used in survival analysis
for data with an exponential distribution may also be appli-
cable. These tests include (1) The Desu test and (2) Gehan's
nonparametric test. For a description of these tests see [3]
and [4]. Thus the data treatment described here enables the
use of various tests of significance which cannot be used
with the conventional method of data treatment.

There is no theoretical basis that we know of to support
the use of an exponential function to describe the data
points. The only justification is the fact that it fits the
highly-skewed population data very well and therefore pro-
vides a concise, accurate and convenient metric for the de-
scription of the behavior of a population in this paradigm.
The fact that the logplots display all of the data points and
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are casily made with readily available computer programs
such as SPSS are further points in favour of their use.

In the absence of any convincing theory to support it, the
use of a more complicated function to fit the data even more
closely would not seem to be warranted, since the aim of
data analysis is to quantify the test and training behavior of
control and experimental groups for comparison.

There are three main ways in which drug treatments or
other experimental procedures might alter the population
distribution. They might change the value of the step-
through rate constant, they may change the distribution
function itself to some other distribution function or they
may partition the population into two (or more) sub-groups
with different step-through rate constants. It is a further ad-
vantage of our method of analysis that all three effects can be
detected from the data. In the last case, the different sub-
populations may in some cases be resolved by fitting an ex-
ponential expression with two (or more) terms to the data
using graphical or computerized curve-fitting methods.
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